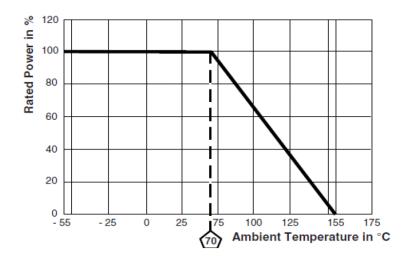


SCRR1206S1 Series Current Sensing Resistor (Lead / Halogen Free)

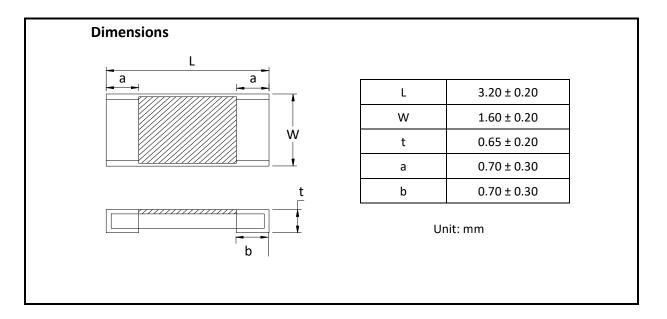
Features / Applications :

- High power rating is up to 1W
- RoHS compliant
- Suitable for reflow soldering



Electrical Specifications :

Characteristics	Feature
Power Rating*	1 W
Resistance Range	$0.01\Omega{\sim}1\Omega$
Temperature Coefficient of Resistance(ppm/°C)	±100
Resistance Tolerance	±1%(F), ±2%(G), ±5%(J)
Operation Temperature Range	-55°C \sim +155°C


*Note :

For sensor operated at ambient temperature in excess of 70° C, the maximum load shall be derated in accordance with the following curve.

Outline Drawing :

Type Designation :

S C R R	1206	S	1 -		
(1)	(2)	(3)	(4) -	(5)	(6)

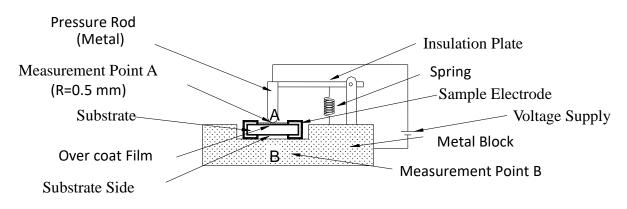
Note :

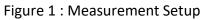
- (1) Series No.
- (2) Size
- (3) Terminal type : S = Short terminal
- (4) Power Rating : 1 = 1W
- (5) Resistance value:

The "R" shall be used as a decimal point, For example --

 $R010 = 0.01\Omega;$

(6) Tolerance (%)


F=±1%, G=±2%, J=±5%



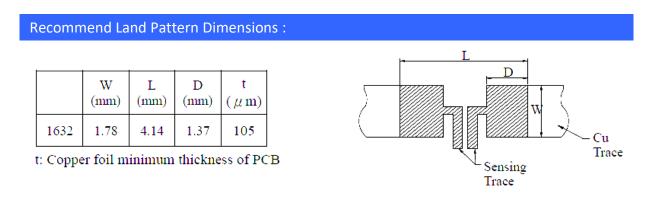
Characteristics :

Electrical

Item	Specification and Requirement	Test Method (JIS 5201)		
Temperature	As electrical specifications	Room temperature		
Coefficient of		Room temperature +100°C		
Resistance(ppm/°C)				
Short Time Overload	△R: ± 0.5%	2.5 x rated power for 5 seconds		
	Without damage by flashover, spark,			
	arcing, burning or breakdown			
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	(1) Setup as figure 1		
	Over 1,000 M Ω on Substrate side face up	(2) Test voltage: 100VDC±15VDC		
		(3) Test time: 60 + 10 / - 0 seconds		
Voltage Proof	Resistance range: ± 1.0%	(1) Setup as figure 1		
	Without damage by flashover, spark,	(2) Test voltage: 400VAC(rms.)		
	arcing, burning or breakdown	(3) Test time: 60 + 10 / - 0 seconds		

Mechanical

Item	Specification and Requirement	Test Method (JIS 5201)		
Solderability	The surface of terminal immersed shall be	Solder bath:		
	minimum of 95% covered with a new	After immersing in flux, dip in 245 \pm 5 $^\circ\!\mathrm{C}$		
	coating of solder	molten solder bath for 2 ± 0.5 seconds		

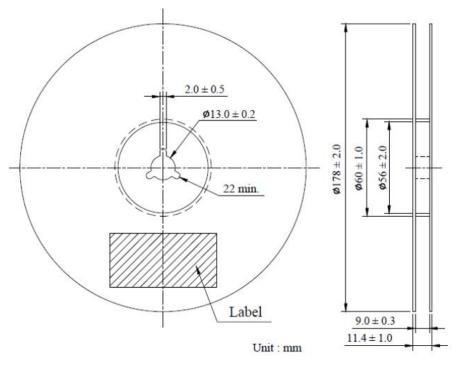


Item	Specification and Requirement		Test Method (JIS 5201)			
Resistance to Solder	△R: ± 1.0%	(1)	(1) Pre-heat: 100~110°C for 30			
Heat	Without distinct deformation in		seconds			
	appearance	(2)	(2) Immersed at solder bath of			
			$270 \pm 5^{\circ}$ C for 10 ± 1 seconds			
Bending Test	△R: ± 1.0%	Ber	Bending value: 3 mm for 30 ± 1 seconds			
	Without mechanical damage such as					
	break					
Solvent Resistance	Without mechanical and distinct damage	(1)	Solvent: Trichloroethane or			
	in appearance		Isopropyl alcohol			
		(2)	Immersed in solvent at room			
			temperature for 300 seconds			

Endurance

ltem	Specification and Requirement	Test Method (JIS 5201)		
Rapid Change of	△R: ± 1.0%	-55 ~125 $^{\circ}$ C 100cycles, 15 min at each		
Temperature	Without distinct damage in appearance	extreme condition		
Moisture with Load	△R: ± 5.0%	40 ± 2 $^\circ C$ with relative humidity		
	Without distinct damage in	90% to 95%. D.C. rated voltage for		
	appearance	1.5 hours ON and 0.5 hours OFF.		
		Cycle repeated 1,000 hours		
Load Life	△R: ± 5.0%	Rated voltage for 1.5 hours followed		
	Without distinct damage in	by a pause 0.5 hour at 70 \pm 2 $^\circ\!\mathrm{C}$.		
	appearance	Cycle repeated 1000 hours		
Low Temperature	△R: ± 5.0%	Store temperature:-55 \pm 3°C for total		
Store	Without distinct damage in	1,000 hours		
	appearance			
High Temperature	△R: ± 5.0%	Store temperature: $150 \pm 2^{\circ}C$ for total		
Store	Without distinct damage in	1,000 hours		
	appearance			

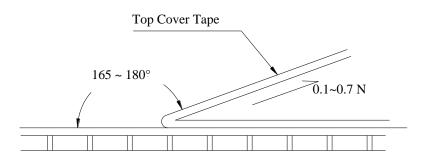
Notice: We recommend there is no circuit design between pads to avoid circuit short.



Remark: Leader tape length≥30 cm(150 Hollow carrier cavity)

Item	А	В	D0	E	F	P1	W	P2	PO	K'	Т
Spec	2.0±0.2	3.5±0.2	1.5±0.1	1.75±0.1	3.5±0.1	4.0±0.1	8.0±0.3	2.0±0.05	4.0±0.1	0.95±0.1	1.04±0.1

Reel dimensions


Numbers of Taping : 4,000 pieces /reel

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

Peel force of top cover tape

The peel speed shall be about 300 mm/min. The peel force of top cover tape shall be between 0.1 to 0.7 N.

Care Note :

Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35° C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen).

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.