Cyntec Automotive Solution for xEV

Automotive World Tokyo 2023

AUTOMOTIVE WORLD 25-27 Jan 東京ビッグサイト Booth 41-24

Cyntec's Key Highlights @ Automotive World 2023

- ✓ Transformers
- ✓ Power chokes
- ✓ For on-board charger and DC/DC converters

- ✓ High accuracy shunt sensors
- ✓ ASIL-D qualified shunt sensor modules
- ✓ For battery management system

- ✓ Power chokes
- Common mode chokes
- ✓ LAN transformer
 - For infotainment / ADAS / lighting ECUs

 Highly integrated, miniaturized automotivegrade DC-DC modules for ECUs

Shunt Sensor & Shunt Sensor Module for BMS

Shunt Sensor

- w/ pin or w/o pin
- Patent pin implementation technology
- Robustness, high precision pin pitch

Shunt Sensor with connector

- Precision can reach $\leq \pm 0.5\%$ through temperature compensation
 - Through QR code to reduce customer test loading

Shunt Module with connector, A/D and MCU

C

- Optional design for customer selection
- Self-diagnostic capability to achieve ASIL level
- High accuracy level ±0.1% by temperature compensation

Technology **Advantages**

Modular Design Competence

Modular design and bending busbar replaces most components reducing complexity and system cost. It also resettable after high energy fault.

Thermal management

Professional team for heat distribution and structure design. Combine with high tech heat dissipated material and two phase cooling way.

Accuracy

-

High accuracy level $\leq \pm 0.1\%$ of voltage and current by temperature compensation through our calibration capabilities on shunt module.

Safety

Design compatible of System, progress, product certificate of ISO26262. Semiconductor of SSR to meet shorter fault current cut-off time from ms to us

Shunt Sensor Family (Bus-bar type)

Chip Size	Chip Size	Operation	Watt	Tolerance	Resistance Distribution		
(mil)	(mm)	Temp (°C)	(W)	(%)	25μΩ 🔶 50	0μΩ 🔶 100μ	Ω 🔶 150μΩ
272*71	69*18	-65~170	36	5			
330*79	84*20	-65~170	36	5			
330*142	84*36	-65~170	36	5			
				TCR Range	<200ppm	≤150pm	<100ppm
				Low TCR Range		=	=
				9		≤50ppm	

Shunt Sensor Family (Connector type)

Chip Size	Chip Size	Operation	Nominal / Peak	Tolerance	Resistance Distribution		
(mil)	(mm)	Temp (°C)	Current (A)	(%)	25μΩ 🔶 50	μΩ 🔶 100μ	Ω ← 150μΩ
272*71	69*18*3	-65~125	500 / 1200 (5sec)	5			
330*79	84*20*3	-65~125	600 / 1500 (5sec)	5			
330*142	84*36*3	-65~125	800 / 2000 (5sec)	5			
				TCR Range	<	·	·
				. e. t. tange	≤200ppm	≦150ppm	≦100ppm

ASIL C Shunt Module

- Nominal Input Voltage : 12~24V
- Current consumption : < 100mA
- Nominal Current : ±1500A
- Peak Current Measurement Range : ±4000A
- Primary Channel Accuracy : ± 0.1%
- Primary Channel Output : CAN
- >3 kV Galvanic Isolation.
- ISO16750 Part 2, Electrical loads for 24V
- Wide Operating temperature range: -40~105°C

More Spec Information Shunt Sensor: <u>Click here</u>

Shunt Sensor: <u>Click here</u> Shunt Sensor Module: <u>Click here</u>

ASIL D Shunt Module

- Nominal Input Voltage : 12~24V
- Nominal Current : ±1000A
- Peak Current Measurement Range : ±10000A (Period: 10ms)
- Primary Channel Accuracy : ± 0.1%
- Secondary Channel(Analog) Accuracy : 2%
- Primary Channel Output : Digital _ CAN FD
- Secondary Channel Output : Analog _ 0 ~ 5V.
- >3 kV Galvanic Isolation.
- ISO16750 Part 2, Electrical loads for 24V

Next Generation High Integration Magnetics Design

Package level integration Transformer + Choke

- Flexibility & customized design
- Available wide inductance range
- Better thermal performance
- High quality potting process

3

2 Magnetic integration Size reduction via core sharing

- Size reduction via core sharing
- · Leakage as inductor possible
- Compared with discrete design, size(~25% ↓) and weight(~25%↓)

Function integration Single transformer for HV and LV battery

- Single transformer for HV and LV battery
- Compared with separated OBC and DC/DC structure design, size(~35%↓) and weight(~30%↓)

A Delta Group Company

High Power Density Magnetics for SiC / GaN Based OBC

40% size reduction

winding loss

PCB , Winding

PCB , Winding

Magnetic circuit integration

(99.0 x 66.5 x 56.0 mm³ Max.)

· Avoid air gap fringing to reduce

• Fluxing cancelling for lower core loss

Transformer for 6.6kW SiC CLLLC OBC

Transformer for 6.6kW GaN CLLLC OBC

50% size reduction Leakage as resonant inductors (74.0 X 52.0 X 47.0 mm³ Max.)

- Suitable litz wire bundle arrangement & winding away from gap to reduce winding loss
- Optimize flux density to reduce core loss

B Effective heat dissipation & higher conversion efficiency

Miniaturization

Lower winding

loss & core loss

2

>98% Peak efficiency

>98% Peak efficiency

Making Things Smaller and Smarter

www.cyntec.com

Contact Window INFO.SERVICE INFO.SERVICE Optimized INFO.SERVICE INFO.SERVICE Optimized INFO.SERVICE IN

