Cyntec Automotive Solution for xEV

Automotive World Nagoya 2022

26-28 Oct Hall 1, Booth 11-44

Cyntec's Key Highlights @ AUTOMOTIVE WORLD Nagoya 2022

- ✓ Transformers
- ✓ Power chokes
- ✓ For on-board charger and DC/DC converters

- ✓ High accuracy shunt sensors
- ✓ ASIL-D qualified shunt sensor modules
- ✓ For battery management system

- Power chokes
- ✓ Common mode chokes
- ✓ LAN transformer
- ✓ For infotainment / ADAS / lighting ECUs

✓ Highly integrated, miniaturized automotivegrade DC-DC modules for ECUs

Shunt Sensor & Shunt Sensor Module for BMS

Shunt Sensor

- w/ pin or w/o pin
- · Patent pin implementation technology
- · Robustness, high precision pin pitch

Shunt Sensor with connector

- Precision can reach <u>≤</u>±0.5% through temperature compensation
- Through QR code to reduce customer test loading

Shunt Module with connector, A/D and MCU

- Optional design for customer selection
- Self-diagnostic capability to achieve ASIL level
- High accuracy level ±0.1% by temperature compensation

Technology Advantages

Modular Design Competence

Modular design and bending busbar replaces most components reducing complexity and system cost. It also resettable after high energy fault.

Thermal management

Professional team for heat distribution and structure design. Combine with high tech heat dissipated material and two phase cooling way.

Accuracy

High accuracy level <u>≤</u>±0.1% of voltage and current by temperature compensation through our calibration capabilities on shunt module.

Safety

Design compatible of System, progress, product certificate of ISO26262. Semiconductor of SSR to meet shorter fault current cut-off time from ms to us

Shunt Sensor Family (Bus-bar type)

Chip Size (mil)	Chip Size (mm)	Operation Temp (°C)	Watt (W)	Tolerance (%)	Resistance Distribut		Ω ← 150μΩ
272*71	69*18	-65~170	36	5			
330*79	84*20	-65~170	36	5			
330*142	84*36	-65~170	36	5			
				TCR Range	≤200ppm	≦150ppm	≤100ppm
				Low TCR Range	≥≥σορρπ	≤50ppm	=100ррпп

Shunt Sensor Family (Connector type)

Chip Size	Chip Size	Operation	Nominal / Peak	Tolerance	Resistance Distribu	ution	
(mil)	(mm)	Temp (°C)	Current (A)	(%)	25μΩ ← 50	0μΩ ← 100μΩ	Ω ← 150μΩ
272*71	69*18*3	-65~125	500 / 1200 (5sec)	5			
330*79	84*20*3	-65~125	600 / 1500 (5sec)	5			
330*142	84*36*3	-65~125	800 / 2000 (5sec)	5			
				TCR Range			
					≦200ppm	≦150ppm	≦100ppm

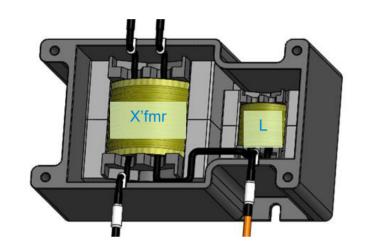
ASIL C Shunt Module

- Nominal Input Voltage: 12~24V
- Current consumption : < 100mA
- Nominal Current : ±1500A
- Peak Current Measurement Range: ±4000A
- Primary Channel Accuracy: ± 0.1%
- Primary Channel Output : CAN
- >3 kV Galvanic Isolation.
- ISO16750 Part 2, Electrical loads for 24V
- Wide Operating temperature range: -40~105°C

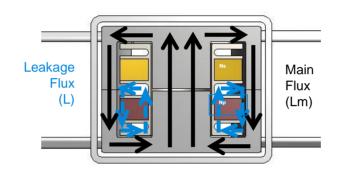
ASIL D Shunt Module

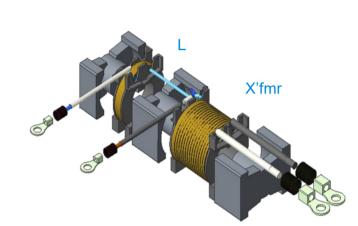
- Nominal Input Voltage: 12~24V
- Nominal Current : ±1000A
- Peak Current Measurement Range: ±10000A (Period: 10ms)
- Primary Channel Accuracy: ± 0.1%
- Secondary Channel(Analog) Accuracy : 2%
- Primary Channel Output : Digital _ CAN FD
- Secondary Channel Output : Analog _ 0 ~ 5V.
- >3 kV Galvanic Isolation.
- ISO16750 Part 2, Electrical loads for 24V

More Spec Information

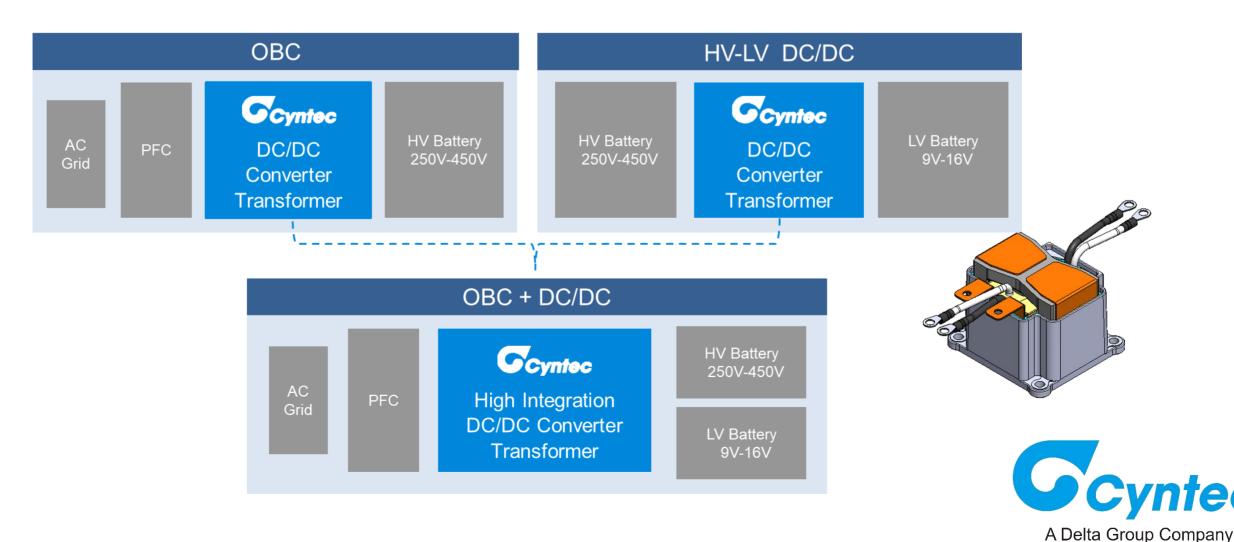

Shunt Sensor: Click here

Shunt Sensor Module: Click here

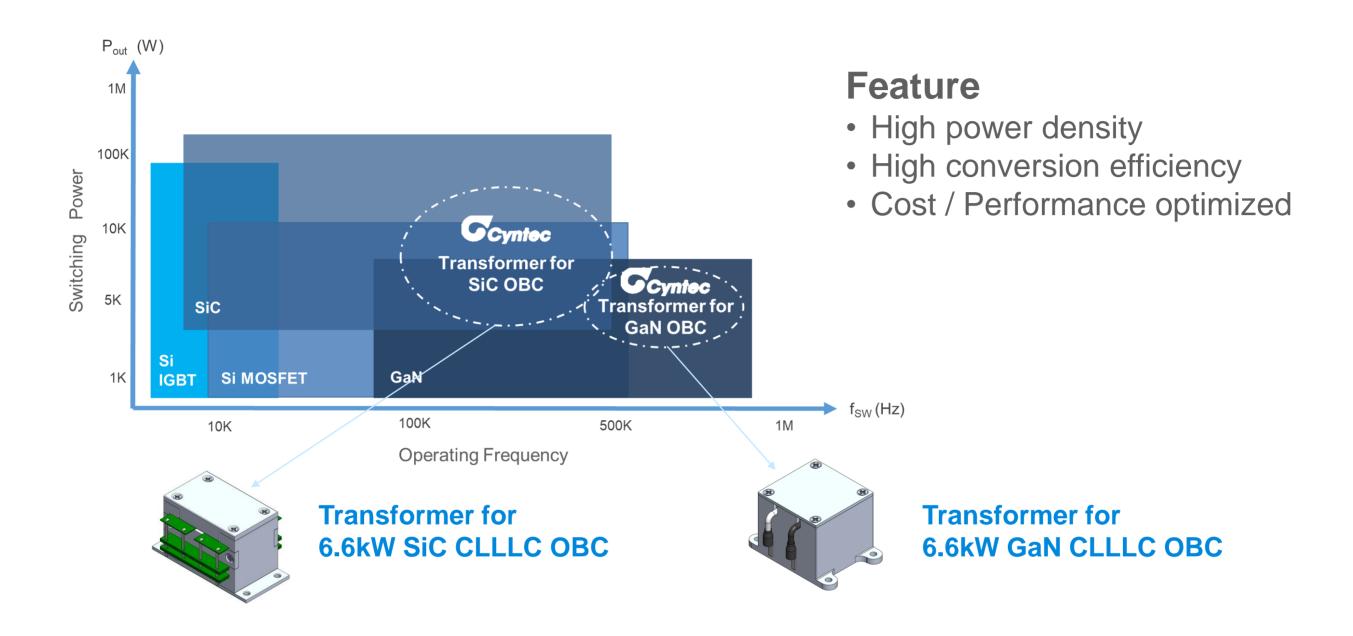


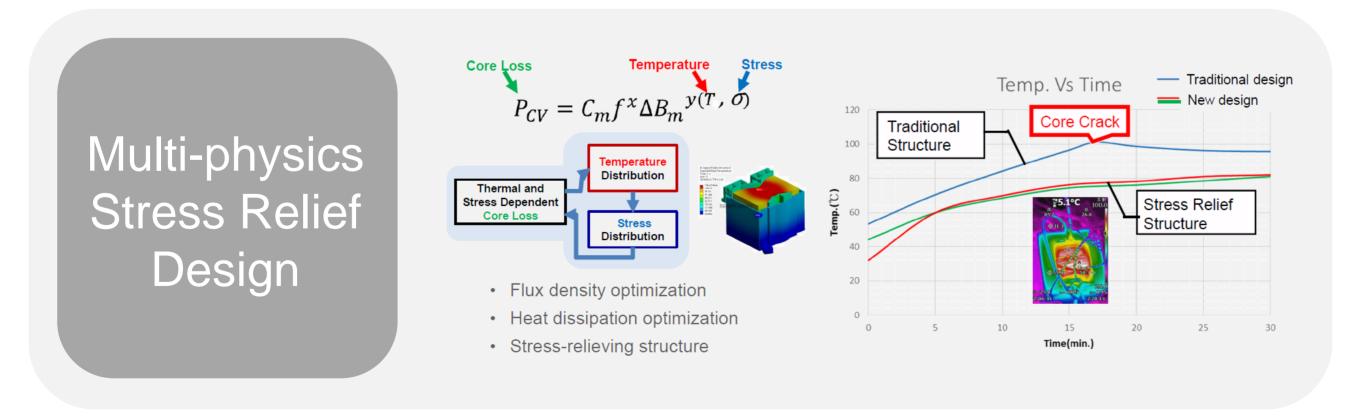

Next Generation High Integration Magnetics Design

- Package level integration
 Transformer + Choke
 - Flexibility & customized design
 - Available wide inductance range
 - Better thermal performance
 - High quality potting process

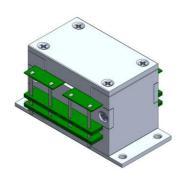


- Magnetic integration
 Size reduction via core sharing
 - Size reduction via core sharing
 - · Leakage as inductor possible
 - Compared with discrete design, size(~25% ↓)
 and weight(~25%↓)

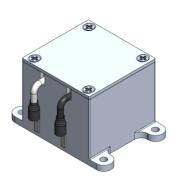




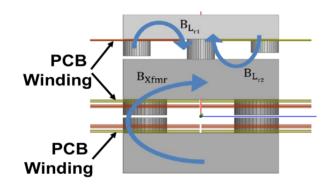
- Function integration
 Single transformer for HV and LV battery
 - Single transformer for HV and LV battery
 - Compared with separated OBC and DC/DC structure design, size(~35%↓) and weight(~30%↓)



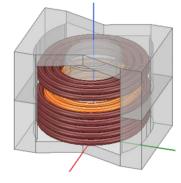
High Power Density Magnetics for SiC / GaN Based OBC



Transformer for 6.6kW SiC CLLLC OBC

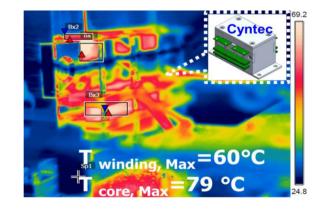


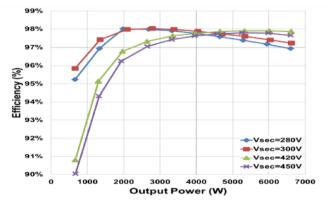
Transformer for 6.6kW GaN CLLLC OBC

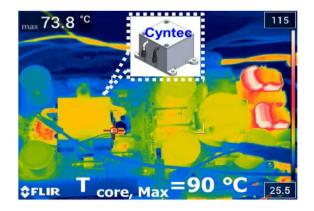

Miniaturization

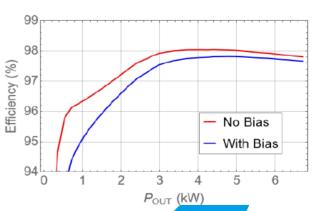
40% size reduction Magnetic circuit integration (99.0 x 66.5 x 56.0 mm³ Max.) **50%** size reduction Leakage as resonant inductors (74.0 X 52.0 X 47.0 mm³ Max.)

- 2 Lower winding loss & core loss
- Avoid air gap fringing to reduce winding loss
- Fluxing cancelling for lower core loss




- Suitable litz wire bundle arrangement & winding away from gap to reduce winding loss
- Optimize flux density to reduce core loss


3 Effective heat dissipation & higher conversion efficiency


>98% Peak efficiency

>98% Peak efficiency

Making Things Smaller and Smarter

www.cyntec.com

Contact Window jpcpbg@deltaww.com

